Skip to content

Introduction

"Allometry" is the study of organismal size and physiological rates of change in relation to body parts (Huxley 1932, 1950). The term "allometric" translates from Latin as "different measure," while "isometric" means "equal measure" (Huxley and Tessier 1936). Allometric scaling refers to the way that physiological or morphological traits, such as metabolism or limb size, change at different rates compared to overall size of an organism. Isometric scaling maintains the same ratio of lengths, making the object appear identical at different scales.

In 1975, Benoit Mandelbrot introduced the word 'fractal' to describe self-similar and irregular patterns found in nature (Mandelbrot 1977). In 1985 Mandelbrot published his book on self-affine fractals and fractal dimensions (Mandelbrot 1985). Mandelbrot later published on multifractals, 1/f noises, and Gaussian self-affinity in nature (Mandelbrot (2002, 2013))

The Julia Set

Plate 1: Gaston Julia created so-called Julia sets using interative functions over 100 years ago. code written in Python.

The Mandelbrot Set

Plate 2: The so-called Mandelbrot Set, named in honor of Benoit Mandelbrot. code written in Python.

Mandelbrot was careful to point out that natural phenomena, including hierarchical branching networks in organisms, are "fractal-like" over a limited range, unlike true fractals, which repeat infinitely. In a review of the most widely cited research on fractals in biology, we found that vascular organisms and forests are almost exclusively referred to as being "self-similar," and, critically, they were measured using self-similar fractal dimension techniques (Table 1).

For a phenomenon to be self-similar, it must have the same appearance at all scales. This is clearly not the case for organisms, as allometric theory describes changes in appearance as they grow and age (Huxley 1932, Kleiber 1932). This misuse of terminology appears to have started as an oversight by authors incorporating fractals into thir research and affecting how ecologists think about scaling processes in relation to fractal dimension.

In most cases, the misuse of "self-similar" has had limited impact on the field. For example, predictions from Metabolic Scaling Theory (MST) (West et al. 1999a, West et al. 1999b, Brown et al. 2002) remain unaffected since allometric equations are complementary to self-affinity. Acknowledging self-affinity may reconcile inconsistencies between MST and observed asymmetry in branching architectures (Bentley et al. 2013, Smith et al. 2014).

Differentiating Between Self-Similarity and Self-Affinity

Reported fractal dimensions of trees and forests using self-similar dimensional analysis are likely to be incorrect based on these facts. Specifically, papers that report the length dimension [Hausdorff-Besicovitch] or box-counting dimension [Minkowski-Bouligand] of hierarchical branching phenomena (leaves, branches, forests) (Table 1) are more problematic.

Pythagoras tree

Plate 3: The Pythagoras Tree (Bosman 1942). Note: the fractal uses self-similar squares with a \(45^\circ\) angle, and branches asymetrically in the positive y-axis. code written in Python.

Mandelbrot (1985) explained how evaluating fractals using self-similar techniques yields inaccurate results for measuring self-affine fractals because self-affine processes change their dimension between local and global scales. Since vascular plants have self-affine geometries, measuring them with self-similar fractal dimensions is likely to produce spurious values, as demonstrated in this study.

Branching tree

Plate 3: A Pythagoras tree with a \(30^\circ\) angle that also includes a length and width variable. Note: the fractal uses a self-affine dimension, where branch length and width decrease at a different rate. code written in Python.

The basic fractal concept requires an object to exhibit a self-similar signal or shape, which can be measured as:

\[ N \propto \frac{1}{\varepsilon^{\beta}} \equiv \varepsilon^{-\beta} \]

Equation 1

where \(N\) is the number of scalars \( \varepsilon \) required to measure the whole object, and \( \beta \) is a scaling exponent. Mandelbrot (1983, 1985) showed that all \( 1/f^{\beta} \) "noises" are self-affine, and \( \beta \) can be transformatively related to a fractal dimension \( \alpha \) via the Hurst exponent \( H \), such that \( \beta = 2\alpha - H \). Examples of \( 1/f^{\beta} \) noises include white noise (\( 1/f^0 \)) and Brownian noise (\( 1/f^2 \)).

A fractal object's topological dimension is given by \( \beta = \frac{\log N}{\log \frac{1}{\varepsilon}} \). A Euclidean object has a dimension \( \beta \) equal to an integer (Mandelbrot 1983). For example, if \( \beta = 2 \), the object is a square (\( \varepsilon^2 \)), or a disk where \( \varepsilon \) equals \( \pi \times \text{radius} \), and the object's mass \( m \) is equivalent to:

\[ m(\varepsilon) \propto \varepsilon^2 \]

When a portion of the object is removed, its new surface or mass is reduced by the factor \( \delta^{\beta} \), written as:

\[ m(\delta \varepsilon) = \delta^{\beta} m(\varepsilon) \]

Equation 2

Table 1: Reported fractal dimensions and techniques measuring fractal behavior in plants or forests

Author(s) by Date Self-similarity Self-affinity Allometric Review (meta-analysis) Characteristic Measured Fractal Dimension(s) DOI/URL
Rubner 1883 Ueber den Einfluss der Körpergröße auf Stoffwechsel DOI:
Kleiber 1932 Body size and metabolism DOI:
Hemmingsen 1960 Energy metabolism as related to body size and respiratory surface, and its evolution DOI:XX
Ultsch 1974 Metabolism and Skeleton size DOI:10.2307/2424317
Taylor et al. 1981 Maximum aerobic capacity DOI:10.1016/0034-5687(81)90075-X
Mandelbrot 1982 Multiple Multiple DOI:10.7560/703544-005
Bradbury and Reichelt 1983 Dimensional analyses Box-counting, Information Dimension
Sernetz et al. 1985 Multiple Length DOI:10.1016/S0022-5193(85)80218-6
Morse et al. 1985 Canopy Length DOI:10.1038/314731a0
Mandelbrot 1986 Multiple Multiple DOI:10.1016/B978-0-444-86995-1.50004-4
Prothero 1986 DOI:10.1016/0300-9629(86)90569-4
Frontier 1987 Multiple Length DOI:10.1007/978-3-642-70880-0_9
Barnsley 1988 DOI:10.1007/978-1-4612-3784-6_1
Tatsumi et al. 1989 Roots Box Count URL
Loehle 1990 DOI:10.1007/BF00153802
Obert et al. 1990 Microbial Colony Box Count Mass DOI:10.1128/jb.172.3.1180-1185.1990
Sugihara and May 1990 Multiple Multiple DOI:10.1016/0169-5347(90)90235-6
Zeide 1991 Canopy Length DOI:0378-1127(91)90230-S
Zeide and Gresham 1991 Canopy Length DOI:10.1139/x91-169
Zeide and Pfeifer 1991 Canopy Length DOI:10.1093/forestscience/37.5.1253
Fitter and Strickland 1992 Roots Length DOI:10.1111/j.1469-8137.1992.tb01110.x
Milne 1992 Multiple Length DOI:10.1086/285312
Milne et al. 1992 DOI:10.1016/0040-5809(92)90033-P
Plotnick et al. 1993 Lacunarity
Lorimer et al. 1994 Multiple Length DOI:10.2737/NC-GTR-170
Solé and Manrubia 1995 Canopy Box Count DOI:10.1006/jtbi.1995.0040
Tatsumi et al. 1995 DOI:10.1626/jcs.64.50
Plotnick 1995 DOI:10.2110/scn.95.36.0001
Calder 1996 Size and life history DOI:
Loehle and Li 1996 Information DOI:10.1016/0304-3800(94)00177-4
Halley 1996 1/f noises Power Spectral DOI:10.1016/0169-5347(96)81067-6
Plotnick et al. 1996 Canopy Gliding Box (lacunarity) DOI:10.2307/2265712
Weishampel et al. 1998 Canopy Lacunarity DOI:10.1016/S0303-2647(97)00092-8
Zeide 1998 Canopy Length DOI:10.1139/x98-139
West et al. 1998 DOI:xx
Banavar, Maritan, & Rinaldo 1999 Transportation networks DOI:
West 1999 Branching Box Count DOI:10.1126/science.284.5420.1677
West et al. 1999 Branching DOI:10.1126/science.276.5309.122
Brown et al. 2000 Multiple DOI:10.1073/pnas.97.11.6242
Li 2000 Patch Information, Box Count DOI:10.1006/jtbi.2000.2070
Dale 2000 Lacunarity DOI:10.1023/A:1008176601940
Zhu & Bunn 2001 Cell oxygen sensing DOI:
Darveau et al. 2002 X Metabolism DOI:10.1038/417166a
Hochachka et al. 2003 X X Body mass effects on metabolism DOI:10.1016/S1095-6433(02)00364-1
Enquist et al. 2002 Canopy, Roots DOI:10.1038/nature01269
Fitter 2002 DOI:xx
Halley et al. 2004 DOI:10.1098/rspa.2004.1384
Drake and Weishampel 2000 Canopy Multifractals DOI:10.1007/s004420050009
Eamus et al. 2002 Roots -- DOI:10.1071/FP02118
Alados et al. 2003 Patch Information DOI:10.1016/S0304-3800(02)00268-1
Zhang et al. 2007 Canopy Length DOI:10.1016/j.ecolmodel.2006.08.002
Enquist et al. 2010 Canopy, Roots -- DOI:10.1098/rspb.2010.1080
West et al. 2010 DOI:10.1038/s41586-019-0976-6
Savage et al. 2010 DOI:10.1073/pnas.1012194108
Seuront 2011 Multiple DOI:10.1016/j.physa.2010.09.025
Brummer et al. 2017 DOI:10.1371/journal.pcbi.1005394
Husain et al. 2022a DOI:10.3390/fractalfract6020089
Husain et al. 2022b DOI:10.3390/fractalfract6070379
Loke & Chisholm 2022 Box Counting
Fischer & Jucker 2023 Box Counting DOI:10.1111/1365-2745.14244
Ain et al. 2024
Maryenko & Stepanenko 2024 box-counting, contour-scaling Brain tissue
Authors Year DOI:
---